Using bayesian belief networks for model duration in text-to-speech systems
نویسندگان
چکیده
The problems of database imbalance and factor interaction make modelling of segment duration in text-to-speech systems a challenging task. We therefore propose a probabilistic Bayesian belief network (BN) approach to tackle data sparsity and factor interaction problems. The belief network approach makes good estimations in cases of missed or incomplete data. Also, it captures factor interaction in a concise way of causal relationships among the nodes in a directed acyclic (DAG) graph. Furthermore, a belief network approach allows a significant reduction of the number of parameters to be estimated. In our work, we model segment duration as a hybrid Bayesian network consisting of discrete and continuous nodes; each node in the network represents a linguistic factor that affects segmental duration. The interaction between the factors is represented as conditional dependence relations in the graphical model. We contrasted the results of belief network model with those of sums of products model and classification and regression tree (CART) model. We trained and tested all three models on the same data. Our new model significantly outperforms CART: the belief network achieves a RMS error of 5 milliseconds compared with 20 ms from CART. The SoP model also produces an error of 9 ms, and hence our new model isn’t any worse in terms of final performance. However, we think our model has many other advantages compared to SoP, for instance it is much easier to configure and experiment with new features. This should make it easier to adapt to new languages.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملProject Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کاملبررسی تأثیر برخی شاخصهای کیفیت آب زیرزمینی بر بیابانزایی اراضی دشت سگزی اصفهان با استفاده از Bayesian Belief Networks
This paper aimed to assess the severity of desertification in Segzi plain located in the eastern part of Isfahan city, focusing on groundwater quality criteria used in MEDALUS model. Bayesian Belief networks (BBNs) were also used to convert MEDALUS model into a predictive, cause and effects model. Different techniques such as Kriging and IDW were applied to water quality data of 12 groundwater ...
متن کاملbelief function and the transferable belief model
Beliefs are the result of uncertainty. Sometimes uncertainty is because of a random process and sometimes the result of lack of information. In the past, the only solution in situations of uncertainty has been the probability theory. But the past few decades, various theories of other variables and systems are put forward for the systems with no adequate and accurate information. One of these a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000